muxado/
heartbeat.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//! Heartbeating [TypedSession] wrapper.
//!
//! This can be used to wrap a [TypedSession] to provide heartbeating
//! functionality. The wrapper will start a background task to send heartbeats
//! to the remote via a dedicated heartbeat stream. It will also accept incoming
//! heartbeat streams and start a task to reply to them.

use std::{
    error::Error as StdError,
    io,
    sync::{
        atomic::{
            AtomicU64,
            Ordering,
        },
        Arc,
    },
    time::Duration,
};

use async_trait::async_trait;
use futures::{
    future::select,
    prelude::*,
};
use tokio::{
    io::{
        AsyncReadExt,
        AsyncWriteExt,
    },
    runtime::Handle,
    select,
    sync::{
        mpsc,
        oneshot,
    },
};

use crate::{
    errors::Error,
    typed::{
        StreamType,
        TypedAccept,
        TypedOpenClose,
        TypedSession,
        TypedStream,
    },
};

const HEARTBEAT_TYPE: StreamType = StreamType::clamp(0xFFFFFFFF);

/// Wrapper for a muxado [TypedSession] that adds heartbeating over a dedicated
/// typed stream.
pub struct Heartbeat<S> {
    runtime: Handle,
    drop_waiter: awaitdrop::Waiter,
    typ: StreamType,
    inner: S,
}

/// Controller for the heartbeat task.
///
/// Allows owners to change the heartbeat timing at runtime and to explicitly
/// request heartbeats. When dropped, cancels the heartbeat tasks.
pub struct HeartbeatCtl {
    // Implicitly used to cancel the heartbeat tasks.
    #[allow(dead_code)]
    dropref: awaitdrop::Ref,
    durations: Arc<(AtomicU64, AtomicU64)>,
    on_demand: mpsc::Sender<oneshot::Sender<Duration>>,
}

/// A handler called on every heartbeat with the latency for that beat.
#[async_trait]
pub trait HeartbeatHandler: Send + Sync + 'static {
    /// Handle the heartbeat
    ///
    /// A `None` latency implies that the timeout was reached before the
    /// heartbeat reply was received.
    ///
    /// If this returns an error, the heartbeat task will exit.
    async fn handle_heartbeat(&self, latency: Option<Duration>) -> Result<(), Box<dyn StdError>>;
}

#[async_trait]
impl<T, F> HeartbeatHandler for T
where
    T: Fn(Option<Duration>) -> F + Send + Sync + 'static,
    F: Future<Output = Result<(), Box<dyn StdError>>> + Send,
{
    async fn handle_heartbeat(&self, latency: Option<Duration>) -> Result<(), Box<dyn StdError>> {
        self(latency).await
    }
}

/// The heartbeat task configuration.
pub struct HeartbeatConfig {
    /// The interval on which heartbeats will be sent.
    pub interval: Duration,
    /// The amount of time past a missed heartbeat that the other side will be
    /// considered dead.
    pub tolerance: Duration,
    /// An optional callback to run when a heartbeat is received.
    pub handler: Option<Arc<dyn HeartbeatHandler>>,
}

impl Default for HeartbeatConfig {
    fn default() -> Self {
        HeartbeatConfig {
            interval: Duration::from_secs(10),
            tolerance: Duration::from_secs(15),
            handler: None,
        }
    }
}

impl<S> Heartbeat<S>
where
    S: TypedSession + 'static,
{
    /// Wrap a typed session and start the heartbeat task.
    /// Returns an error if the stream can't be opened.
    pub async fn start(sess: S, cfg: HeartbeatConfig) -> Result<(Self, HeartbeatCtl), io::Error> {
        let (dropref, drop_waiter) = awaitdrop::awaitdrop();

        let mut hb = Heartbeat {
            runtime: Handle::current(),
            drop_waiter: drop_waiter.clone(),
            typ: HEARTBEAT_TYPE,
            inner: sess,
        };

        let (dtx, drx) = mpsc::channel(1);
        let (mtx, mrx) = mpsc::channel(1);
        let mut ctl = HeartbeatCtl {
            dropref,
            durations: Arc::new((
                (cfg.interval.as_nanos() as u64).into(),
                (cfg.tolerance.as_nanos() as u64).into(),
            )),
            on_demand: dtx,
        };

        let stream = hb
            .inner
            .open_typed(hb.typ)
            .await
            .map_err(|_| io::ErrorKind::ConnectionReset)?;

        ctl.start_requester(stream, drx, mtx, drop_waiter.wait())
            .await?;
        ctl.start_check(mrx, cfg.handler, drop_waiter.wait())?;

        Ok((hb, ctl))
    }
}

impl HeartbeatCtl {
    /// Explicitly request a heartbeat and return the latency.
    pub async fn beat(&self) -> Result<Duration, io::Error> {
        let (tx, rx) = oneshot::channel();
        self.on_demand
            .send(tx)
            .await
            .map_err(|_| io::ErrorKind::NotConnected)?;
        rx.await.map_err(|_| io::ErrorKind::ConnectionReset.into())
    }

    /// Change the heartbeat interval.
    pub fn set_interval(&self, interval: Duration) {
        self.durations
            .0
            .store(interval.as_nanos() as u64, Ordering::Relaxed);
    }

    /// Change the heartbeat tolerance.
    pub fn set_tolerance(&self, tolerance: Duration) {
        self.durations
            .1
            .store(tolerance.as_nanos() as u64, Ordering::Relaxed);
    }

    fn start_check(
        &mut self,
        mut mark: mpsc::Receiver<Duration>,
        cb: Option<Arc<dyn HeartbeatHandler>>,
        dropped: awaitdrop::WaitFuture,
    ) -> Result<(), io::Error> {
        let (mut interval, mut tolerance) = self.get_durations();
        let durations = self.durations.clone();

        tokio::spawn(
            select(
                async move {
                    let mut deadline = tokio::time::Instant::now() + interval + tolerance;
                    loop {
                        match tokio::time::timeout_at(deadline, mark.recv()).await {
                            Err(_e) => {
                                if let Some(cb) = cb.as_ref() {
                                    cb.handle_heartbeat(None).await?;
                                }
                            }
                            Ok(Some(lat)) => {
                                if let Some(cb) = cb.as_ref() {
                                    cb.handle_heartbeat(lat.into()).await?;
                                }
                            }
                            Ok(None) => {
                                return Result::<(), Box<dyn StdError>>::Ok(());
                            }
                        };

                        // Slight divergence from Go implementation: this didn't
                        // previously happen in the "timeout" case, which did noting but
                        // the callback. Presumably, this usually killed the connection,
                        // causing the goroutine to exit *anyway*. If we didn't reset
                        // the deadline here, it would timeout immediately rather than
                        // blocking indefinitely as in Go.
                        (interval, tolerance) = get_durations(&durations);
                        deadline = tokio::time::Instant::now() + interval + tolerance;
                    }
                }
                .boxed(),
                dropped,
            )
            .then(|_| async move {
                tracing::debug!("check exited");
            }),
        );

        Ok(())
    }

    async fn start_requester(
        &mut self,
        mut stream: TypedStream,
        mut on_demand: mpsc::Receiver<oneshot::Sender<Duration>>,
        mark: mpsc::Sender<Duration>,
        drop_waiter: awaitdrop::WaitFuture,
    ) -> Result<(), io::Error> {
        let (interval, _) = self.get_durations();
        let mut ticker = tokio::time::interval(interval);

        tokio::spawn(
            select(
                async move {
                    loop {
                        let mut resp_chan: Option<oneshot::Sender<Duration>> = None;

                        select! {
                            // If on_demand is closed, this will return None
                            // immediately. In that case, wait on the next tick instead.
                            c = on_demand.recv() => if c.is_none() {
                                ticker.tick().await;
                            } else {
                                resp_chan = c;
                            },
                            _ = ticker.tick() => {},
                        }

                        tracing::debug!("sending heartbeat");

                        let start = std::time::Instant::now();
                        let id: i32 = rand::random();

                        if stream.write_all(&id.to_be_bytes()[..]).await.is_err() {
                            return;
                        }

                        let mut resp_bytes = [0u8; 4];

                        tracing::debug!("waiting for response");

                        if stream.read_exact(&mut resp_bytes[..]).await.is_err() {
                            tracing::debug!("error reading response");
                            return;
                        }

                        tracing::debug!("got response");

                        let resp_id = i32::from_be_bytes(resp_bytes);

                        if id != resp_id {
                            return;
                        }

                        let latency = std::time::Instant::now() - start;

                        if let Some(resp_chan) = resp_chan {
                            let _ = resp_chan.send(latency);
                        } else {
                            let _ = mark.send(latency).await;
                        }
                    }
                }
                .boxed(),
                drop_waiter,
            )
            .then(|_| async move {
                tracing::debug!("requester exited");
            }),
        );

        Ok(())
    }

    fn get_durations(&self) -> (Duration, Duration) {
        get_durations(&self.durations)
    }
}

fn start_responder(rt: &Handle, mut stream: TypedStream, drop_waiter: awaitdrop::WaitFuture) {
    rt.spawn(select(
        async move {
            loop {
                let mut buf = [0u8; 4];
                if let Err(e) = stream.read(&mut buf[..]).await {
                    tracing::debug!(?e, "heartbeat responder exiting");
                    return;
                }
                if let Err(e) = stream.write_all(&buf[..]).await {
                    tracing::debug!(?e, "heartbeat responder exiting");
                    return;
                }
            }
        }
        .boxed(),
        drop_waiter,
    ));
}

#[async_trait]
impl<S> TypedAccept for Heartbeat<S>
where
    S: TypedAccept + Send,
{
    async fn accept_typed(&mut self) -> Result<TypedStream, Error> {
        loop {
            let stream = self.inner.accept_typed().await?;
            let typ = stream.typ();

            if typ == self.typ {
                start_responder(&self.runtime, stream, self.drop_waiter.wait());
                continue;
            }

            return Ok(stream);
        }
    }
}

#[async_trait]
impl<S> TypedOpenClose for Heartbeat<S>
where
    S: TypedOpenClose + Send,
{
    async fn open_typed(&mut self, typ: StreamType) -> Result<TypedStream, Error> {
        // Don't open a heartbeat stream manually
        if typ == self.typ {
            return Err(Error::StreamRefused);
        }

        self.inner.open_typed(typ).await
    }

    async fn close(&mut self, error: Error, msg: String) -> Result<(), Error> {
        self.inner.close(error, msg).await
    }
}

impl<S> TypedSession for Heartbeat<S>
where
    S: TypedSession + Send,
    S::TypedAccept: Send,
    S::TypedOpen: Send,
{
    type TypedAccept = Heartbeat<S::TypedAccept>;
    type TypedOpen = Heartbeat<S::TypedOpen>;

    fn split_typed(self) -> (Self::TypedOpen, Self::TypedAccept) {
        let drop_waiter = self.drop_waiter;
        let typ = self.typ;
        let runtime = self.runtime;
        let (open, accept) = self.inner.split_typed();
        (
            Heartbeat {
                runtime: runtime.clone(),
                drop_waiter: drop_waiter.clone(),
                typ,
                inner: open,
            },
            Heartbeat {
                runtime,
                drop_waiter,
                typ,
                inner: accept,
            },
        )
    }
}

fn get_durations(durations: &Arc<(AtomicU64, AtomicU64)>) -> (Duration, Duration) {
    (
        Duration::from_nanos(durations.0.load(Ordering::Relaxed)),
        Duration::from_nanos(durations.1.load(Ordering::Relaxed)),
    )
}